Intake
- Confirm alert source, severity, and timestamp.
- Identify asset owner and business criticality.
- Check if there is an open change or maintenance window.
Keystroke dynamics, keystroke biometrics, typing dynamics, or typing biometrics refer to the collection of biometric information generated by key-press-related events that occur when a user types on a keyboard.[1] Use of patterns in key operation to identify operators predates modern computing,[2] and has been proposed as an authentication alternative to passwords and PIN numbers.[3]
Science The behavioral biometric of keystroke dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.[4][5][6] The user’s keystroke rhythms are measured to develop a unique biometric template of the user’s typing pattern for future authentication.[7] Keystrokes are separated into static and dynamic typing, which are used to help distinguish between authorized and unauthorized users.[8] Vibration information may be used to create a pattern for future use in both identification and authentication tasks.
History During the late nineteenth century, it was discovered that individual telegram operators each had a unique “fist”, or rhythm that they used to tap out Morse code. An experienced operator could recognize another operator based on “fist” alone, similar to a voice or fingerprint.[9] As late as World War II, the military transmitted messages through Morse code, and military intelligence utilized each individual operator’s unique “fist” as a way of tracking individual ships or detachments, and for traffic analysis.[10][11]
Keyboard dynamics received attention as a potential alternative to short PIN numbers, which were widely used for authentication early in the expansion of networked computing.[12]
Collection and potential use of keystroke dynamics data The behavioral biometric of keystroke dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.[13][14][15] The user’s keystroke rhythms are measured to develop a unique biometric template of the user’s typing pattern for future authentication.[7] Keystrokes are separated into static and dynamic typing, which are used to help distinguish between authorized and unauthorized users.[16] Vibration information may be used to create a pattern for future use in both identification and authentication tasks.
Keystroke dynamic information could be used to verify or determine the identity of the person producing the keystrokes.[17] The techniques used to do this vary widely in sophistication and range from statistical techniques to artificial intelligence (AI) approaches such as neural networks.
The time to seek and depress a key (seek-time) and the time the key is held down (hold-time) may be characteristic of an individual, regardless of the total speed at which they type. Most people take longer to find or get to specific letters on the keyboard than their average seek-time for all letters. Which letters require more time vary dramatically and consistently for different people. Right-handed people may be statistically faster in getting to keys they hit with their right-hand fingers than with their left-hand fingers. Index fingers may be faster than other fingers, consistent for a user, regardless of their overall speed.
In addition, sequences of letters may have characteristic properties for a user. In English, the use of “the” is very common, and those three letters may be known as a rapid-fire sequence. Common endings, such as “ing”, may be entered far faster than the same letters in reverse order (“gni”) to the degree that varies consistently by user. This consistency may hold and reveal common sequences of the user’s native language even when they are writing entirely in a different language.
Common “errors” may also be quite characteristic of a user. There is a taxonomy of errors, such as the user’s most common “substitutions”, “reversals”, “drop-outs”, “double-strikes”, “adjacent letter hits”, “homonyms” and hold-length-errors (for a shift key held down too short or too long a time). Even without knowing what language the user is working in, these errors may be detected by looking at the rest of the text and what letters the user goes back and replaces.
Authentication versus identification Keystroke dynamics is part of a larger class of biometrics known as behavioral biometrics, a field in which observed patterns are statistical in nature. Because of this inherent uncertainty, a commonly held belief is that behavioral biometrics are not as reliable as biometrics used for authentication based on physically observable characteristics such as fingerprints or retinal scans or DNA. Behavioral biometrics use a confidence measurement in replacement of the traditional pass/fail measurements. As such, the traditional benchmarks of False Acceptance Rate (FAR) and False Rejection Rates (FRR) no longer have linear relationships.
The benefit to keystroke dynamics (as well as other behavioral biometrics) is that FRR/FAR can be adjusted by changing the acceptance threshold at the individual level. This allows for explicitly defined individual risk mitigation that physical biometric technologies could not achieve.
One of the major problems that keystroke dynamics runs into is that a user’s typing varies substantially during a day and between different days and may be affected by any number of external factors.
Because of these variations, any system will make false-positive and false-negative errors. Some successful commercial products have strategies to handle these issues and have proven effective in large-scale use in real-world settings and applications.[citation needed]
Legal and regulatory issues Use of keylogging software may be in direct and explicit violation of local laws, such as the U.S. Patriot Act, under which such use may constitute wire-tapping.
Triage
- Validate the signal: find a second data point (log, metric, packet).
- Scope impact: users affected, systems touched, lateral movement signs.
- Preserve evidence: copy relevant logs and note hashes where possible.
Containment
- Prefer reversible steps: disable accounts, isolate network segments, stop services with a rollback plan.
- Communicate what changed and why to stakeholders.
Eradication and recovery
- Remove malicious artifacts (files, registry keys, scheduled tasks).
- Patch vulnerabilities or rotate credentials involved.
- Restore services and monitor closely for recurrence.
Post-incident
- Write a brief timeline with UTC timestamps.
- List root cause (if known) or most probable cause.
- Capture lessons learned and follow-up tasks.